
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Department of Computer Science, Punjabi University Patiala

QUEUES

• Introduction to Queue

•Operations on the Queue

• Memory Representation

Contents for Today’s Lecture

Introduction

• Queue is a linear data structure.

• Queue has two ends Front and Rear.

• Element can be added at Rear of the queue and the

element can be removed from the Front end of the queue.

• The elements of a queue are processed in the same order

as they were added into the queue.

• Queues are also known as FIFO (First In Order First

Out) list or FCFS (First Come First Serve basis) list

For Example,

Queue at the ticket counter of railway station, bank, post

office, bill deposit counter etc.

Introduction (continued)

People waiting in a Queue

Queue is a very important data structure as it has various

applications in programming(system programming as well

as application programming).

Operations on the Queue

Two basic operations which are performed on queue are:

• Insertion

• Deletion

Insertion operation refers to addition of a new element at

the Rear of the queue. An attempt to insert an element in a

filled queue (having no space) results in a state called

overflow condition.

Deletion operation refers to the removal of an element from

the Front of the queue. An attempt to delete an element from

the empty queue(having no element) is known as underflow

condition.

Operations on the Queue (continued)

Consider a list of four elements (a, b, c, d) where a is the

front element and d is rear element.

a b c d

Front Rear

A queue with Four Elements

New element e will be inserted at the rear end, here, after the

element d as shown in figure below:

Only element at the front end can be deleted from the queue.

Here, the element a will be deleted from the queue as shown:

Operations on the Queue (continued)

Inserting an element in the queue

Deleting an element from the queue

a b c d

Front Rear

e

a b c d

Front

e

Rear

Another element that can be deleted from the queue is b as

shown below:

Operations on the Queue (continued)

Deleting another element from the queue

b c d

Front

e

Rear

Memory Representation of Queue

Memory
Representation

Using Array
Using Linked

List

• The elements of the queue must be of same type

(homogenous).

• Maximum size of the queue must be defined before

implementing it as array is static data structure.

• Queue grows and shrinks over time but an array has constant

size.

• First In First Out (FIFO) order must be maintained using

two variables Front and Rear.

Array Representation of Queue

1 2 3 4 5 6 7

a b c d e

Queue having 5 elements

Front Rear

Insertion

The new element can be added at the Rear end after

incrementing the variable Rear

Array Representation of Queue (Cont..)

f

1 2 3 4 5 6 7

a b c d e

Front Rear

Inserting an element g at index 7 in the queue

g

f

1 2 3 4 5 6 7

a b c d e

Inserting an element f at index 6 in the queue

Front Rear

Array Representation of Queue (Cont..)

The only element at the front of the queue can be removed

and variable Front of the queue will be incremented by one.

Deletion

a f

1 2 3 4 5 6 7

b c d e

Front Rear

Deletion of an element from the queue

g

Array Representation of Queue (Cont..)

b f

1 2 3 4 5 6 7

c d e

Front Rear

Deletion of another element from the queue

g

Array Representation of Queue (Cont..)

In the above mentioned queue, the front positions start

vacating during the deletion process. To make full use of

space, two cases arise,

• Shift all the elements in the left after each deletion

position.

• Use circular array to implement queue termed as

circular queue.

Shifting elements in the front positions is not efficient in

terms of time, so the circular queue is very efficient

option.

Array Representation of Queue (Cont..)

• An array in the form of circle is used.

• After the last index, there it the turn of first index

making it circular.

Circular Queue

• Insertion

• Deletion

Operations on Circular Queue

Insertion in Circular Queue

• Before inserting an element, the overflow condition must be

checked.

• If last indexed position is occupied, element will be inserted

at the first index.

Insertion of an element ‘Data’ into the circular queue. The size of the Queue is

‘n’ i.e. ‘n’ number of elements can be accommodated in the Queue. Here, lower

index is taken as ‘1’ and upper index is taken as ‘n’.

Step 1: If Front = 1 and Rear = n Then

Print “Queue is full, Overflow Condition”

Exit

[End If]

Step 2: If Front = Rear + 1 Then

Print “Queue is full, Overflow Condition”

Exit

[End If]

Insertion in Circular Queue

a

bc

d

e f

6

1

23

5

4

Rear

Front

Front = 1 Rear = 6

g

hc

d

e f

6

1

23

5

4

RearFront

Front = Rear + 1

Insertion in Circular Queue

Step 3: If Rear = Null Then

Set Front = 1 and Rear = 1

If Rear = n Then

Set Rear = 1

Else

Set Rear = Rear + 1

[End If]

Step 4: Set Q[Rear] = Data

Step 5: Exit

c

d

e f
6

1

23

5

4

Rear

Front

Rear = 1

6

1

23

5

4

Front = 0 Rear = 0

d

e f
6

1

23

5

4
RearFront

Rear = Rear + 1

g

Deletion in Circular Queue

• Before deleting an element, the underflow condition must be

checked.

• If Front is reached at last index, after deletion Front will

refer to the first index.

Deletion in Circular Queue

Deleting an Element from the Queue. The size of the Queue is ‘n’ i.e. ‘n’ number of

elements can be accommodated in the Queue. Here, lower index is taken as ‘1’ and upper

index is taken as ‘n’.

Step 1: If Front = Null Then

Print: “Queue is empty, Underflow Condition”

Exit

[End If]

Step 2: Set Data = Q[Front]

Step 3: If Front = Rear Then

Set Front = Null and Rear = Null

6

1

23

5

4

Front = 0 Rear = 0

c

6

1

23

5

4
Rear
Front

Front= Rear

Else If Front = n Then

Set Front = 1

Else

Set Front = Front + 1

[End If]

Step 4: Exit

Deletion in Circular Queue

h

g

f
6

1

23

5

4

Rear

Front

Front= 6

h

g

i

6

1

23

5

4

Rear

Front

Front= 1

• The elements of the queue may be of different type

(hetrogenous).

• Maximum size of the queue may be changed at run time

(Dynamic data structure).

• First In First Out (FIFO) order must be maintained

using two pointer variables Front and Rear.

• Front holds the address of the first node and the Rear

holds the address of the last node of the linked list.

Front Rear

A Queue Maintained using a Linked List

a b c d Null

Linked List Representation of Queue

The insertion of a new element e in the above shown

queue can be shown as in figure below:

Front Rear

This insertion of an element ‘e’ in the queue

a b c d

e Null

Insertion in Queue using Linked List

Rear ---> Next = New

Rear = New

• Deletion of node pointed by Front variable can be done.

• After deletion, Front will point to 2nd node.

Front Rear

Deletion of an element from the Queue

a b c d Null

Front = Front  Next

Deletion in Queue using Linked List

Insert an element ‘Data’ in queue having variable ‘Front’ which contains the address of

1st element of the queue and variable ‘Rear’ which contains the address of last element

of the queue.

Step 1: If Free = Null Then

Print: “No Free Space Available for Insertion”

Exit

[End If]

Step 2: Allocate memory to node New

Set New = Free and Free = Free -> Next

Step 3: Set New-> Info = Data and New -> Next = Null

Step 4: If Rear = Null Then

Set Front = New and Rear = New

Else

Set Rear -> Next = New and Rear = New

[End If]

Step 5: Exit

Insertion in Queue using Linked List

Deletes an element from a queue having a variable Front which contains the address of 1st

element of the queue and variable Rear which contains the address of last element of the

queue.

Step 1: If Front = Null Then

Print “ Queue is Empty”

Exit

[End If]

Step 2: Set Data = Front -> Info, Temp = Front

Step 3: If Front = Rear Then

Set Front = Null and Rear = Null

Else

Set Front = Front -> Next

[End If]

Step 5: Deallocate memory taken by node Temp

Set Temp -> Next = Free, Free = Temp

Step 6: Exit

Deletion in Queue using Linked List

