
Book

A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

APPLICATIONS OF STACKAPPLICATIONS OF STACKAPPLICATIONS OF STACKAPPLICATIONS OF STACK

2

• Definition Of Stack

• Operations On Stack

• Applications Of Stack

• Evaluation of Arithmetic Expression

• Matching Parenthesis

• Quick Sort

• Recursion

3

Contents

Definition

• Stack is one of the most commonly used linear data

structures.

• In stack insertion and deletion of an element can occur at

only end known as TOP.

• Insertion operation is known as PUSH and deletion is

known as POP.

• Stack is also called LIFO(Last In First Out).

• It means that last item inserted to the stack will be the

first item to be removed form the stack.

4

Operations On Stack

5

Push Pop

Stack Showing Push And Pop Operations From The Top Position

6

Applications of Stack

Stack is used in wide variety of applications. These are

extensively used in system programming (compilers and

operating system) and application programming .

Evaluation of Arithmetic Expression

An important application of stack is the compilation of

arithmetic expression in the programming languages.

The compiler must be able to translate the infix

notation to reverse polish notation. Compilers

accomplish this task of notation conversion with the

help of stack.

• In this notation, operator is placed between its operands.

For example, m * n

• While solving the infix notation, the main consideration is

the precedence of the operators and their associativity.

• For example, consider an expression,

e = q * r + s

In this expression, q and r are first multiplied and then s

is added. That is, * operator has precedence over the +

operator.

Infix Notation

7

Consider an expression,

e = 4 – 2 ^ 4 + 8 * 3 + 18 / 3 + 6

^ having highest precedence over the other operators, will be

solved first

e = 4 – 16 + 8 * 3 + 18 / 3 + 6

Now, * and / operations will be performed from left to right

because both are having same level of precedence.

e = 4 – 16 + 24 + 18 / 3 + 6

e = 4 – 16 + 24 + 6 + 6

Now, + and – operations will be performed from left to right

because both are having same level of precedence.

e = - 12 + 24 + 6 + 6

e = 12 + 6 + 6

e = 18 + 6

e=24

Example : Infix Notation

2^4

8*3

18/3

4-16

-12+24

12+6

18+6

8

Infix Notation(Contd.)

Precedence and associativity of the operators:

Priority Operator Associativity

1st Brackets Inner to Out and Left to Right

2nd Exponent ^ Left to Right

3rd * / Left to Right

4th + - Left to Right

5th = Right to Left

• The main problem with this notation is that the order of

operator and operands in the expression does not

uniquely decide the order in which operations are to be

carried out.
9

• This notation is also popular with the name polish

notation.

• In prefix notation, operator is placed before its

operands. For example, *mn.

• The main characteristics of this notation is that the order

in which the operations are to be carried out is

completely determined by the position of operators and

operands in the expression.

• While solving the arithmetic expression which is written

in prefix/polish notation, there is no need to take care of

any precedence rule.

Prefix Notation

10

In order to translate an arithmetic expression from infix to

polish notation, we will do it step by step by using []

(square brackets) to indicate the partial conversion.

Example 1:

Iin =)/ c

= [- ab] / c

Ipre = / - abc

Example 2:

Iin = (x – y)*((z + v) / f)

= [- xy]*([+ zv] / f)

= [- xy]*[/ + zvf]

Ipre = * - xy / + zvf
11

Prefix Notation (contd.)

• The postfix notation is also known as reverse polish

notation.

• In this notation, operator is placed after its operands.

• For example, mn +, mn -, mn *, mn / and mn ^.

• The fundamental characteristics of this notation is that

there is no need of parenthesis to designate the hierarchy

of operators.

• In this notation, order of operations is completely

determined by the order of operands and its operators.

Postfix Notation

12

Example 1: I i n = (a – b) / c

= [a b -] / c

I post = a b – c /

Example 2: I i n = (x – y) * ((z + v) / f)

= [x y -] * ([z v +] / f)

= [x y -] * [z v + f /]

I post = x y – z v + f / *

13

CONVERSION FROM INFIX TO POSTFIX

STEP 1:Push a left parenthesis (onto the stack.

STEP 2:Append a right parenthesis) at the end of Given expression I.

STEP 3:Repeat steps from 4 to 8 by scanning I character by character

from left to right until the stack is empty.

STEP 4: If the current character in I is a white space, simply ignore it.

STEP 5: If the current character in I is an operand, write it as the next

element of the postfix expression P.

STEP 6:If the current character in I is a left parenthesis (, push it

onto the stack.

AlgorithmAlgorithmAlgorithmAlgorithm:::: ConvertConvertConvertConvert anananan arithmeticarithmeticarithmeticarithmetic expressionexpressionexpressionexpression ‘I’‘I’‘I’‘I’ writtenwrittenwrittenwritten inininin

infixinfixinfixinfix notationnotationnotationnotation intointointointo itsitsitsits equivalentequivalentequivalentequivalent postfixpostfixpostfixpostfix expressionexpressionexpressionexpression ‘P’‘P’‘P’‘P’....

14

STEP 7: If the current character in I is an operator , Then

• Pop operators (if there is any) at the top of stack while

they have equal or higher precedence than the current

operator and put the popped operators in the postfix

expression P.

• Push the currently scanned operator on the stack.

STEP 8: If the current character in I is a right parenthesis, Then

• Pop operators from the top of the stack and insert them in

the postfix expression P until a left parenthesis is

encountered at the top of the stack.

• Pop and discard left parenthesis (from the stack.

STEP 9: Exit

Algorithm: (Continued)

15

Conversion of infix expression I into its postfix Conversion of infix expression I into its postfix Conversion of infix expression I into its postfix Conversion of infix expression I into its postfix

expression Pexpression Pexpression Pexpression P

16

(

6

+

2

)

5

-

8

/

4

Null

(

((+

((

(

((

(

(

(*

(*

(-

(-

*

6

6 2 +

6

6 2 +

6 2 +

6 2 + 5

6 2 + 5 *

6 2 + 5 * 8

6 2 + 5 * 8(- /

) 6 2 +5 *8 4 /-

Character Scanned Status Of Stack Postfix Expression P

ALGORITHM: Evaluate an arithmetic expression ‘P’ written

in postfix notation and calculates the result of the expression

in variable ‘Value’.

STEP 1: Scan P from left to right and Repeat steps 2 and 3 for

each scanned character until end of the expression.

STEP 2: If scanned character is an operand, push it onto the

stack.

STEP 3: If the scanned character is an operator Then

Pop the two top elements a and b from the stack where a

is the top element and b is the next to top element.

Apply the operator on the operands b and a and push the

result onto the stack.

[End loop]

STEP 4: Set Value = Stack [Top]

STEP 5: Print: “The value of the expression is “: Value

STEP 6: Exit

Evaluation Of Postfix NotationEvaluation Of Postfix NotationEvaluation Of Postfix NotationEvaluation Of Postfix Notation

17

Evaluation Of Postfix

Notation

18

6

2

40

6

40 2/

* 40

-

+ 8

5

4

8

38

8

40 8

Character Scanned Stack

• A stack can be used for syntax verification of the arithmetic

expression i.e. matching parenthesis.

• To accomplish this task, the expression is scanned from left to

right character by character.

• Whenever a left parenthesis is encountered, we push it onto the

stack.

• When we encounter a right parenthesis], or), or}, the status of the

stack is checked.

• If the stack is empty then we have a right parenthesis in the

expression that does not have the corresponding left parenthesis in

the expression showing the mistake in the expression.

19

Matching parenthesisMatching parenthesisMatching parenthesisMatching parenthesis

• If the stack is not empty, we will pop the topmost element

from the stack and compare it with the scanned right

parenthesis. If both the parenthesis are not of the same type

then it shows a mistake in the expression. But, if both the

parenthesis are of the same type then the same procedure is

repeated until the whole expression is scanned and stack is

empty.

Matching ParenthesisMatching ParenthesisMatching ParenthesisMatching Parenthesis

20

STEP 1: Scan the expression I from left to right and Repeat

steps 2 to 4 for each scanned character until the end

of the expression is reached.

STEP 2: If the scanned character is left parenthesis then

push it onto the stack.

STEP 3: If the scanned character is an operator or operand

then ignore it.

STEP 4: If the scanned character is a right parenthesis Then

a) If Stack[Top] = Null Then

Print “There is no left parenthesis corresponding to right

parenthesis”.

Exit

[End If]

21

Algorithm:

Syntax verification by scanning an arithmetic expression ‘I’

b. Pop the top element from the stack and compare it with

currently scanned right parenthesis.

c. If both are not corresponding Then

Print “The braces are not in proper order”.

Exit

[End If]

[End Loop]

STEP 5 :If Stack [Top] != Null Then

Print: “There is no right parenthesis corresponding to the

left parenthesis”.

Exit

[End If]

STEP 6: Exit.

Algorithm(Contd.)Algorithm(Contd.)Algorithm(Contd.)Algorithm(Contd.)

22

Let us check the order of braces in an arithmetic expression I using

above algorithm.

I = [(5 + 6) * 7 – {7 / 4} + (3 * 2) – 8]

Character Scanned Status of Stack

[[

([(

) [

{ [{

} [

([(

) [

] Null

ExampleExampleExampleExample

23

Null

[

[

[

[

[

[

ExampleExampleExampleExample

Top

Stack

[

(

)

{

}

(

)

]

Character Scanned

I=[(5+6)*7-{7/4}+(3*2)-8]

(

{

(

[

24

Quick SortQuick SortQuick SortQuick Sort

• Quick sort is an important application of stack. Sorting

means, the arrangement of the elements of the list in some

logical order.

• Quick sort algorithm which is an important application of

stack uses divide and conquer policy for sorting the list of

elements.

• In divide and conquer policy, the problem to be solved is

divided into sub- problems repeatedly until we reach the

smallest size sub-problems whose solution is easy to find.

• Then solution of these small sub-problems is combined to

obtain the solution of the whole problem.

25

Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)

Consider an unsorted list of 10 elements:

8 2 11 1 33 4 3 100

←

Here, while scanning the list from right to left the first element 5

will be interchange with the element smaller than 5.

Now, starting from first position i.e. from element 3, scan the list

from left to right by comparing each 26element with 5.This time

meeting an element larger than 5, we will stop scanning the list

and interchange it with 5.

3 2 11 1 33 4 100 7

←

→

8 2 11 1 33 4 100 7

29

5 7

3

8 5

5

Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)

Now, starting from element 8, scan the list from right to left by

comparing each element with 5 and stop scanning the list on

meeting an element smaller than 5, and interchange the currently

scanned element with 5.

3 2 11 1 33 8 100 7

→

Now, starting from element 4, scan the list from left to right by

comparing each element with 5, meeting an element greater than 5

and interchange the element with 5.

3 4 2 1 33 8 100 7

←

Similarly, starting from element 11, scan the element from right to

left by comparing each element with 5 and interchange it with a

smaller element.

27

5 4

11 5

Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)

3 4 2 33 11 8 100 7

→

Now, starting from element 1, scan the list from right to left.

Here, this time there is no element which is larger than 5. It

means the element 5 is at the correct position in the list and all the

elements smaller than 5 are on the left side and elements larger

than 5 are on the right side of the element 5.

3 4 2 1 5 33 11 8 100 7

Left Sublist Right Sublist

Now, the task of sorting is reduced to sorting the two sublists.

28

5 1

Quick Sort (Contd.)

29

3 124

1 4 2 3

1 2 4

Sorting Left Sublist:

In this pass the fist element of the list will occupy its correct

position in the list.

In 2nd pass of sorting sublist scan the list from left to right

and meeting an element larger than element 3 interchange

this element with 3.

Now scan the list starting from right to left by comparing

each element with 3 and an element meeting an element

smaller than 3 interchange it with 3.

3

Quick Sort (Contd.)Quick Sort (Contd.)Quick Sort (Contd.)Quick Sort (Contd.)

30

Sorting Right Sublist :

In first pass of sorting right sublist first element of the sublist

i.e. 33 will occupy its correct position in the list .

33 11 8 100 7

In second pass scan the list left to right and an meeting an

element larger than 33 stop scannig and interchange with 33.

7 11 8 100 33

Now scan the list from right to left and finding an element

smaller than 33 interchange it with 33.

7 11 8 33 100

Quick Sort(Contd.)

•

31

Sorting Right Sublist:

7 11 8 33 100

Left Sublist Right Sublist

Sorting Left Sublist:

7 11 8

In first pass first element 7 occupy its correct position.

7 11 8

The sorted sublist is:

7 8 11

Quick Sort (Contd.)

32

Sorted Array is:

1 2 3 4 5 7 8 11 33 100

In this array all elements are sorted(ascending order)

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10]

Consider a linear list ‘L’ having 12 numbers :

29 35 42 17 39 12 25 54 10 72 19 85

1 2 3 4 5 6 7 8 9 10 11 12

An Unsorted Array ‘L’ of 12 Elements

Initially, the lower bound and upper bound of given linear list will

be pushed onto the two different stacks named Lbstack and

Ubstack respectively as shown below:

1 12←Stack Top→

Lbstack Ubstack

Stacks containing the lower bound and Upper Bound of the list

Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)

33

Now, the first reduction step will be performed on the list after popping

the indices of the list from both the stacks making them empty.
29 35 42 17 39 12 25 54 10 72 19 85

←

35 42 17 39 12 25 54 10 72 85

Lbstack Ubstack

19 42 17 39 12 25 54 10 72 85

19 42 17 39 12 25 54 72 35 85

Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)

1 10

1212

1 8

10 12

Stack Top

Stack Top

34

1929

2935

29 10

Quick sort(contd.)

19 10 17 39 12 25 54 72 35 85

19 10 17 12 54 42 72 35 85

• Now the status of stack is :Now the status of stack is :Now the status of stack is :Now the status of stack is :

19 10 25 17 54 42 72 35 85

19 10 25 17 29 12 39 54 42 72 35 85

→

•
35

61

8 12

2942

39 25

Stack Top

39 12

29

29

19 10 25 17 12 39 54 42 72 35 85

1 2 3 4 5

Left Sublist

29

Two Sublists Created After The First Reduction Step

After the completion of first step, the first element has occupied the

correct position in the list and two sublists have been created. The

lower and upper indices of newly created sublists will be pushed into

the stacks LbStack and UbStack as shown in figure.

7

1

12

5
←Stack Top→

Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)

7 8 9 1O 11 126
Right Sublist

36

Now, the same procedure will be applied on the sublist whose

lower and upper indices will be popped from top of the stacks

LbStack and UbStack respectively.

Here, the reduction step will be applied on the right sublist first

whose lower and upper indices are 7 and 12 respectively.

After the completion of the reduction step, the element at index

number 7 i.e. 39 will occupy the correct position in the sublist and

the sublist will be divided into two new sublists whose indices will

be pushed onto the stacks.

This procedure will be repeated until the whole list is stored.

Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)Quick Sort(Contd.)

37

Algorithm: Algorithm: Algorithm: Algorithm:

Sort an array ‘L’ with ‘n’ elements Quick sort (L,

n)

STEP 1: Set stacktop =

STEP 2: If n > 1 Then

Set stacktop = 1

Set LbStack [stacktop] =1

Set UbStack [stacktop] = n

[End If]

STEP 3: Repeat Steps 4 to 7 while stacktop =

STEP 4: Set Begin = LbStack [stacktop]

Set End = UbStack [stacktop]

Set stacktop = stacktop – 1

STEP 5: Loc = Splitpass (L, Begin, End)
38

STEP 6: If Begin < Loc - 1 Then

Set stacktop = stacktop +1

Set Lbstack [stacktop] = Begin

Set UbStack [stacktop] = Loc -1

[End If]

STEP 7: If End > Loc + 1 Then

Set stacktop = stacktop + 1

Set LbStack [stacktop] = Loc + 1

Set UbStack [stacktop] = End

[End If]

[End Loop]

STEP 8: Exit

Algorithm(Contd.)

39

ALRORITHM
SplitPass (L, Begin, End)

STEP 1: Set Left = Begin, Right = End, Loc = Begin And Flag =False

STEP 2: Repeat steps 3 to 6 While Flag = False

STEP 3: Repeat While L [Loc] < = L [Right] And Loc !=Right

Set Right= Right – 1

[End Loop]

STEP 4: If Loc = Right Then

Set Flag = True

Else If L[Loc] > L[Right] Then

Interchange L[Loc] and L[Right]

Set Loc = Right

[End If]

40

STEP 5: Repeat While L[Loc] > = L[Left] AND Loc !=Left

Set Left =Left + 1

[End Loop]

STEP 6: If Loc = Left Then

Set Flag= True

Else If L[Loc] < L[Left] Then

Interchange L[Loc] and L[Left]

Set Loc = Left

[End If]

[End Loop]

STEP 7: Return Loc

Algorithm(ContdAlgorithm(ContdAlgorithm(ContdAlgorithm(Contd.)

41

Complexity Analysis of Quick Sort AlgorithmComplexity Analysis of Quick Sort AlgorithmComplexity Analysis of Quick Sort AlgorithmComplexity Analysis of Quick Sort Algorithm

• Complexity of a sorting algorithm is represented by function

f(n) i.e. number of comparisons required to sort the list of

elements.

• While analyzing quick sort algorithm, the worst case occurs

when after each reduction step, the list is partitioned into two

sublists with one of them being empty. In this situation, the 1st

element will be compared with n - 1 elements to remain at its

original position.

• During the second reduction step, 2nd element will be compared

with n- 2 elements to remain at its original position and so on.

So, in the worst case, the complexity will be:

f(n) = (n-1) + (n-2) + (n-3) + …….+ 3 + 2 + 1= 0(n2)

42

Complexity Analysis of Quick Sort AlgorithmComplexity Analysis of Quick Sort AlgorithmComplexity Analysis of Quick Sort AlgorithmComplexity Analysis of Quick Sort Algorithm

• The average case occurs, when after each reduction step of the

algorithm, it produces two sublists of approximately same size.

To calculate the average case complexity, two assumptions are to

be made.

 The size of the list n should be the power of 2 i.e. n = 2m, for

some positive integer value of m.

 After each reduction step sublists formed are approximately

of equal size.

 This procedure will continue until there is n sub lists of size 1

each.

So, total number of comparisons f(n) will be:

f(n) = O(n log2 n)
43

• Stack is also used to implement recursive procedure in

programming languages like PASCAL, ALGOL, C, C++.

• Recursion is very important and powerful tool for developing

algorithms for various problems.

• Recursion is the ability of a procedure either to call itself or

calling to some other procedure may result in call to the original

procedure.

• Two very important conditions/ requirements that must be

satisfied by any procedure to be defined recursively are:

 There must be a decision criterion that stops the further call

to the procedure called base criteria.

 Each time a procedure calls itself either directly or indirectly,

it must be nearer to the solution i.e. nearer to the base

criteria.

RecursionRecursionRecursionRecursion

44

Factorial Function

It is a recursively defined problem. The factorial of a positive

number n is the product of positive integers from 1 to n. The

Factorial of a number is represented symbolically by placing a

symbol ‘!’ next to it. The factorial of a positive integer n will be

defined as:

The value of the factorial function for zero is taken as 1. For e.g.

Example Of RecursionExample Of RecursionExample Of RecursionExample Of Recursion

Thus, the formal definition of the factorial function can be given as:

45

ALGORITHM : Calculate the value of n! recursively

Factorial (n)LE

If n = 0 Then

Set Fact = 1

Return

Else

Set Fact = n * Factorial (n-1)

Return

[End If]

Example Of RecursionExample Of RecursionExample Of RecursionExample Of Recursion

46

Fibonacci Series

A Fibonacci series is a sequence of numbers which is usually

denoted by F
0,
F
1
, F

2
F
3
,…….,F

n.
The series is as shown below:

0, 1,1, 2, 3, 5, 8, 13, 21,……

Generally, in a Fibonacci series, each succeeding term is a sum of

two preceding terms. The recursive procedure for finding the nth

term of the Fibonacci series can be defined as:

Example Of Recursion(Contd.)Example Of Recursion(Contd.)Example Of Recursion(Contd.)Example Of Recursion(Contd.)

47

ALGORITHM: Find the nth term of a Fibonacci series recursively.

Fibonacci (n)

If n =0 Then

Set Fibo = 0

Return

Else if n = 1 Then

Set Fibo = 1

Return

Else

Set Fibo = Fibonacci (n – 1) + Fibonacci (n -2)

Return

[End If]

Example Of Recursion(Contd.)Example Of Recursion(Contd.)Example Of Recursion(Contd.)Example Of Recursion(Contd.)

48

Example Of Recursion(Contd.)

• Consider an example of finding the 4th term of the Fibonacci

series recursively. The procedure followed for it is shown below:

49

F4

F3

F2

F1=1

F2
F0=0

F1=1

F1=1

F0=0

To find the 4th term recursively ,it is necessary to find the 2nd

and 3rd term first.And in turn to find the 3rd term,it is necessary

to compute the 2nd and 1st term first.To find the 2nd term of the

series,it will be required to find the 1st term and 0th term.By

using the values of 0th and 1st term explicitly and backtracking

the steps followed,we can find the 4th term of the series.

When To Use RecursionWhen To Use RecursionWhen To Use RecursionWhen To Use Recursion

There are many factors that affect the choice of procedure for

solving a given problem:

• Computer Memory Required

• Processing Time Required

• Time Required for developing the Algorithm

• Time Required for Debugging

It is always advisable to consider a tree structure for a given

problem. If the tree structure is simple then use of non-recursive

procedure is suitable. If the tree structure appears quite bushy

with duplication of tasks, then recursive procedure is suitable.

50

Demerits Of RecursionDemerits Of RecursionDemerits Of RecursionDemerits Of Recursion

1. Many programming languages do not support recursion. Hence

recursive mathematical function is implemented using

interactive methods.

2. Mathematical functions are implemented using recursion at the

cost of execution time and memory space.

3. A recursive procedure can be called from within or outside itself

and to show its proper functioning it has to save the return

addresses in same order so that, a return to the proper location

will result when the return to a calling statement is made.

4. A special care is required to put a stopping condition at which

the recursive function will stop.

51

