
BookBook
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors
Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

2

DEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITION

• A Heap is a complete binary tree with n
elements which is maintained in the memory
using a linear array.

• It is a very important data structure which can
be used efficiently to sort given list of elements.

• There are two types of heaps:

o If the value present in any node is greater
than all its children then such a tree is called
as the max-heap or descending heap.

o In min-heap or ascending heap the value
present at any node is smaller than all its
children.

3

CHARACTERISTICSCHARACTERISTICSCHARACTERISTICSCHARACTERISTICSCHARACTERISTICSCHARACTERISTICSCHARACTERISTICSCHARACTERISTICS

• A Heap is a binary tree which satisfy following

characteristics :

o The binary tree should be almost complete

that is all the leaf node should be at kth or

(k+1)th level.

o The value at any node is larger or equal to

the value at each of its two children.

4

HEAPHEAPHEAPHEAPHEAPHEAPHEAPHEAP

92

45 55

6085

65

7265 3540

44

A HEAP WITH 12 NODES(MAX HEAP)

92

6085

5

Memory Representation of HeapMemory Representation of HeapMemory Representation of HeapMemory Representation of HeapMemory Representation of HeapMemory Representation of HeapMemory Representation of HeapMemory Representation of Heap

• Array representation is very space efficient for
maintaining complete or almost complete binary
tree.

• As heap is almost complete binary tree ,so heap
can be stored in linear array efficiently.

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12]

Array representation of heap shown in last slide.

92 85 60 65 72 40 35 16 44 65 45 55

6

OPERATION ON OPERATION ON OPERATION ON OPERATION ON OPERATION ON OPERATION ON OPERATION ON OPERATION ON
HEAPHEAPHEAPHEAPHEAPHEAPHEAPHEAP

7

Inserting an element into a Inserting an element into a

HeapHeap
 Consider an array H which is a heap

and we have a data element New that
we want to insert into the heap.

 The data element New will be inserted at
the end of array H , so that H is still a
complete binary tree

 After the insertion of New element at the
end of heap H , H may not still be a heap
. Then newly inserted element New will
rise up to its appropriate position so that
tree again becomes a heap.

8

19

17741

1612

19 12 16 1 4 7 17

A[1] A[7]A[6]A[5]A[4]A[3]A[2]

Inserting new

element 17 at

the end of the

heap.

Consider a heap H of size 6 as shown below. We

want to insert an element 17 into this heap.

As 17 is

greater than

16, so

swapping

takes place.

17

16

9

ALGORITHMALGORITHMALGORITHMALGORITHMALGORITHMALGORITHMALGORITHMALGORITHM

Step1: Set n=n+1 And Pos=n

Step2: Repeat Steps 3 and 4

While H[Pos/2]<=New AND Pos/2>=1

Step3: Set H[Pos]=H[Pos/2]

Step4: Set Pos=Pos/2

[End Loop]

Step5: H[Pos]=New

Step6: Exit

10

CREATING A HEAPCREATING A HEAPCREATING A HEAPCREATING A HEAPCREATING A HEAPCREATING A HEAPCREATING A HEAPCREATING A HEAP

• While creating a Heap H, we insert the given

element into the heap sequentially one by one.

• The size of the heap increases as an element is

inserted into the heap.

• To create a heap of size n, the nth element is

placed into the existing heap of size n-1.

• The new is first placed at the end of the array

such that the constraint of the almost complete

tree is maintained.

11

CONTINUEDCONTINUED
• Then the new inserted element is compared with its

parent element and if > its parent element then it is

interchanged with its parent child and this

interchanging is done until either the parent

element is greater or the root of the tree is reached.

• Suppose, we want to create a heap H from the

given list of numbers:

15 7 10 2 20 15 8

12

15STEP1:
INSERT 15

7

15
STEP2:
INSERT 7

13

15

7 10

15

2

107

STEP3:

INSERT 10

STEP4:

INSERT 2

14

15

7

2

10

20

STEP5:

INSERT 20

As 20 is greater

than 7.So they

are swapped.

20 is

greater

than

15.so

swap

these two

nodes.

20

7

15

20

15

STEP6:

INSERT 15

20

15 10

2 7 15

As 15 is greater

than 10.So they

are swapped.
15

10

16

STEP7:
INSERT 8 20

15 15

2 8107

Heap is created.

17

DELETING AN ELEMENT FROM HEAPDELETING AN ELEMENT FROM HEAPDELETING AN ELEMENT FROM HEAPDELETING AN ELEMENT FROM HEAPDELETING AN ELEMENT FROM HEAPDELETING AN ELEMENT FROM HEAPDELETING AN ELEMENT FROM HEAPDELETING AN ELEMENT FROM HEAP

• In a heap an element is always deleted

from the root. Consider a heap of n

elements which is maintained in an array H.

The deletion operation can be

accomplished as:

• First of all, we will store the root element of

the heap i.e. H[1] into a variable item.

• We replace the root element of the heap

with the last element of the heap i.e. H[n]
and decrease the size of the array by 1. At

this stage the array H is a complete binary

tree but not necessarily a heap.
18

CONTINUEDCONTINUED
• We move the root element of the tree down after

comparing and exchanging it with its child element

such that H is finally a heap. The rule is if any of the

child element is greater than the root element then

we exchange it with the larger child element.

19

Consider a heap given below:

92

45 55

6085

65

7265 3540

44

Only 92can be

deleted.

For this the

root node

is replaced

with the

last element of

the

heap i.e. 55

55

Almost complete binary tree but

not heap. So we compare 55

with both its children.

As 55 is smaller than 85,

it will be replaced with the

larger child element i.e.85.

55

85
Again, we compare 55

with both its children.

As 72 is greater than

55, so they are

swapped

55

72

This is heap.

20

ALGORITHMALGORITHMALGORITHMALGORITHMALGORITHMALGORITHMALGORITHMALGORITHM

• DeleteItem(H,n)

• Step 1: Set Pos=1

• Step 2: Set Item=H[Pos]

• Step 3: Set Temp =H[n] And n=n-1

• Step 4: Set Left=2*Pos And Right=2*Pos+1

• Step 5: Repeat steps 6 to 8 While Right<=n

• Step 6: If Temp>= H[Left] And Temp<=H[Right]

Set H[Pos]=Temp

return

[End if]

21

ContinuedContinued
• Step 7: If H[Left]>=H[Right] then

Set H[Pos]=H[Left] And Pos=Left

Else

Set H[Pos]=H[Right] And pos=right

[End if]

• Step 8: Set Left=2*Pos And Right = 2*Pos+1

[End While]

• Step 9: If Left=n and Temp <H[Left] then

Set H[Pos]=H[Left] and Pos=left

[End If]

• Step 10: Set H[pos]=Temp and return Item

22

Heap SortHeap SortHeap SortHeap SortHeap SortHeap SortHeap SortHeap Sort

• Firstly the given unsorted list is converted into a

max heap, because of the order property of the

max heap that root node always contains the

largest element of the list.

• The heap sort extracts the elements from the heap

one at a time by deleting the root of the heap.

• The process continues until no more elements are

left in the heap.

• The deleted elements are placed at the

appropriate place in the array, which will be

sorted at the end of the heap sort.

23

Consider an unsorted array A of size 8 shown below:

22 35 17 8 13 44 5 28

A[1] A[8]A[7]A[6]A[5]A[4]A[3]A[2]

22

35

22

Step1:

Step2:

Compare the new

element with its

parent node and

interchange the

positions if required.

do the comparisons

until the root is

reached or the parent

is greater

22

35

24

35

22 17

44138

Step3:

17

44

Compare 44 with its
parent. As 44 is
greater than 17 so
they are swapped.

Again Compare
44 with its
parent. 44 is
greater than 35 so
they are
swapped.

44

35

25

Step4:

517

28

138

3522

44

Compare 28 with its
parent. As 28 is
greater than 8 so
they are swapped.

8

28

Again Compare 28
with its parent. As
28 is greater than
22 so they are
swapped.

28

22

Max heap

26

44 28 35 22 13 17 5 8

The sorted array is:

A[1] A[8]A[7]A[6]A[5]A[4]A[3]A[2]

35 28 17 22 13 8 5 44

Step1:

A[8]A[7]A[6]A[5]A[4]A[3]A[2]A[1]

Delete largest element 44 & place in the last position.
Re-heap the remaining elements.

Heap
Sorted
list

Heap

27

Step2:

28 22 17 5 13 8 35 44

22 13 17 5 8 28 35 44

A[3]A[1] A[2]

A[5]A[3] A[7]A[6] A[8]A[2] A[4]A[1]

A[8]A[7]A[6]A[5]A[4]

Step3:

Delete element 35 & place in the second last position.
Re-heap the remaining elements.

Delete element 28 & place in the 3rd last position. Re-
heap the remaining elements

Heap
Sorted
list

Heap
Sorted
list

28

Step4:

17 13 8 5 22 28 35 44

13 5 8 17 22 28 35 44

A[1] A[8]

A[8]A[7]A[6]A[5]A[4]A[3]A[2]A[1]

A[4] A[5] A[6] A[7]A[2] A[3]

Step5:

Delete element 28 & place in the sorted list. Re-heap the
Remaining elements . Similarly for rest of the elements.

Heap
Sorted
list

Heap
Sorted
list

29

8 5 13 17 22 28 35 44

5 8 13 17 22 28 35 44

A[1] A[7] A[8]

A[8]A[7]A[6]A[5]A[4]A[3]A[2]A[1]

A[2] A[3] A[4] A[5] A[6]

Step6:

Step7:

Heap
Sorted
list

Sorted
list

30

ALGORITHMALGORITHMALGORITHMALGORITHMALGORITHMALGORITHMALGORITHMALGORITHM

• The first four steps of the algorithm will convert the

unsorted array A into a heap and steps 5 through 8

will sort the repeatedly deleting the root of the

heap.

• Step 1: Repeat Steps 2 to 4 for j=1 to n-1

• Step 2: Set Pos =j+1 And Temp=H[pos]

• Step 3: Repeat While H[Pos/2]<=Temp And Pos/2

Set H[Pos]=H[Pos/2]

Set Pos= Pos/2

[End loop]

31

CONTINUEDCONTINUEDCONTINUEDCONTINUEDCONTINUEDCONTINUEDCONTINUEDCONTINUED

32

CONCLUSIONCONCLUSION

• The primary advantage of the heap sort is its
efficiency. The execution time efficiency of
the heap sort is O(n log n). The memory
efficiency of the heap sort, unlike the other n
log n sorts, is constant, O(1), because the
heap sort algorithm is not recursive.

• The heap sort algorithm has two major steps.
The first major step involves transforming the
complete tree into a heap. The second
major step is to perform the actual sort by
extracting the largest element from the root
and transforming the remaining tree into a
heap.

33

