
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Department of Computer Science, Punjabi University Patiala

BINARY SEARCH TREE(BST)

 Binary Search Tree

 Operations on binary search tree

Searching a particular element in BST

Insertion of an element

Deletion of an element

Finding the smallest element

Finding the largest element

Contents for Today’s Lecture

Binary Search Tree

 Binary search tree(BST) is a very important subclass of

binary trees.

 In binary trees data is not ordered in some logical order

But in BST, data is managed in such a logical way that it

can be retrieved efficiently when required.

A binary search tree is a binary tree in which node

containing the data has the following constraints:

Each data element in the left subtree is less than

its root element.

Each data element in the right subtree is greater

than or equal to its root element.

Both the left and right subtree of the root will

be again a BST.

Binary Search Tree(continued)

The binary tree shown is binary search tree.

When this BST is traversed it produces a sorted list of data elements.

50

100

2004020 70

10

30

25

Operations on Binary Search Tree

Various operations that can be performed on binary search

tree are:

• Searching a particular key element.

• Inserting an element.

• Deletion of an element.

• Finding the smallest element.

• Finding the largest element.

• To search particular element in a binary search tree, start at the

root by comparing the desired element with the value stored at

root.

• If both are same , stop the search.

• Otherwise follow the left or right subtree depending on whether

the given element is less than or larger than the element stored at

root node.

• This procedure is repeated recursively until we find the desired

element

• If not found then conclude that element is not present in the

binary search tree.

Searching of a particular key value in BST

ALGORITHM to search a particular value in BST

BSTSearch(Root,Item,Position,Parent)

Step1: If Root=Null Then

set Position = null

set Parent = null

Return

[End If]

Step 2: Pointer=Root And Pointer P = Null

Step 3: Repeat Step 4 While Pointer != Null

Step 4: If Item = PointerInfo Then

set Position = Pointer

set Parent = PointerP

Return

Step 5: Else If Item<PointerInfo Then

.

set PointerP = Pointer

set Pointer = PointerLeft

Else

set PointerP = Pointer

set Pointer = PointerRight

[End If]

[End Loop]

Step 5: Set Position =Null And Parent = Null

Step 6: Return

ALGORITHM(continued)

Inserting of a particular key value in BST

Consider the following binary tree :

40

80

7

90

15

60

18

10022

30

40

While inserting a new element into the binary search tree, the

properties of the BST must be preserved

so that the tree remains a binary search tree even after insertion.

Consider an Item=10 is to be inserted .

Firstly compare 10 with root value i.e 40

As 10 is less than root element (40) so we will proceed towards

leftsubtree .

Now 10 is compared with root of left subtree. i.e 15

Inserting of a particular key value in BST

40 >10

40

15 >10

Inserting of a particular key value in BST

As 10<15 so proceed towards left subtree.

Now 10 is compared with 7

As 7<10 and there is no right subtree so insert the new element in

right node as shown:

7 <10

15

40

The tree after insertion of element 10 is given as :-

Inserting of a particular key value in BST

40

15

7

10 18

100

80

30

60

40

22

Step 1: If Free = Null Then

Print: “No space is available for the node to insert”

Exit

Else

Allocate memory to new node for insertion

(New = Free And Free = Free Right)

Set NewInfo= Item

Set Newleft= Null And NewRight= Null

[End if]

Step 2: If Root= Null Then Set Root= New

Exit

[End If]

Step 3: If Item >= Root  Info Then

Set Pointer=Root Right

Set PionterP= Root

Else

Algorithm to insert a given element

Algorithm to insert a given element(conti.)

Set Pointer=Root Left

Set PionterP= Root

[End If]

Step 4: Repeat step 5 while Pointer !=Null

Step 5: If Item >=Pointer Info Then

Set PionterP=Pointer

Set Pointer=Pointer Right

Else

Set PionterP=Pointer

Set Pointer=Pointer Left

[End If]

[End Loop]

Step 6: If Item< PointerPInfo Then

Set PointerPLeft=New

Else

Set PointerPRight= New

[End If]

Step 7: Exit

Algorithm to insert a given element(conti.)

• Complexity of Insertion process in a Binary search tree is

O(h), where h is the height of BST.

• If BST is complete binary tree or almost complete binary

tree , then the complexity of the insertion process is O(log2n)

Complexity of Insertion Process

Deletion of a node from binary search tree

The process of Deletion of a node from BST is a little bit

complex than searching and insertion.

The first step for the deletion of a given item from a binary

search tree is to locate the node containing the item to be

removed and its parent node.

The node to be deleted from the tree may be a leaf node or it

may have one child or two children.

Deletion of a node from binary search tree

For example consider a binary search tree shown below:

50

40

30 45 10060

35 12020

43

90

55 7042

32

95

92 97

Deletion of a node from binary search tree

Here , in the binary search tree shown, it is very simple to

delete the leaf nodes 20, 32, 43, 55, 70, 92, 97 and 120,

because the only thing which is required to be done to change

the respective pointer in their parent node to Null.

On the other hand when the node to be deleted has only one

child, for example the items 35, 42, and 45 in the binary

search tree shown above have only one child, the deletion

operation is still simple as the node to be deleted will be

replaced by its only child node.

For example if we want to delete the item 45 from the tree

then the node containing 45 will be replaced by its child node

and the tree after deletion will become as Shown:

Deletion of a node from binary search tree

50

40
90

30

55

60 100

70 95 12035

42

4320

979232

DeleteItem(Root, Item)

Step1: Call BSTSearch (Root, Item, Position, Parent)

Step2: If Position=Null Then

Print:"Item not found in the tree"

Exit

[End if]

Step 3: If Position Left != Null And Position  Right !=Null

Then

Call Delete2(Root, Position, Parent)

Else

Call Delete1(Root, Position ,Parent)

[End If]

Algorithm to delete a given element

Algorithm to delete a given element

Step 4: Deallocate memory held by node Position

(Set PositionRight = Free And Free=Position)

Step 5: Exit

BSTSearch() algorithm has already been explained

Refer this sub algorithm from there.

Algorithm to delete a given element

The below Sub-algorithm delete a node having zero or one

child from the binary search tree.

Delete1(Root, Position, Parent)

Step1: If PositionLeft=Null And PositionRight= Null

Then

Set Temp= Null

Else If Position Right!=Null Then

Set Temp = PositionRight

Else

Set Temp =PositionLeft

[End If]

Step 2: If Parent= Null Then

Set Root= Temp

Else If Position= ParentLeft Then

Algorithm to delete a given element

Set ParentLeft=Temp

Else

Set ParentRight=Temp

[End If]

Step 3: Return

Algorithm to delete a given element

The below sub-algorithm delete a node having two children

from the binary search tree.

Delete2(Root, Position, Parent)

Step1: Set Pointer = Position Right And PointerP=Position

Step2 : Repeat while Pointer Left !=Null

Set PointerP=Pointer And Pointer= PointerLeft

[End Loop]

Step3: Set Successor =Pointer And PSuccessor=PointerP

Step4: Call Delete(Root,Successor,PSuccessor)

Step5: If Parent != Null Then

If Position =ParentLeftThen

Set ParentLeft =Successor

Else

Algorithm to delete a given element

Set ParentRight =Successor [End If]

Else

Set Root=Successor

[End If]

Step6: Set SuccessorLeft=PositionLeft

Step7: Set SuccessorRight =PositionRight

Step8: Return

Finding the smallest element in BST

As in binary search tree every left node is smaller than right node

in each subtree of BST.

Therefore to find the smallest element in BST we will have to

traverse the left most node of the BST .

Algorithm to find the smallest element in BST

Step1: If Root=Null Then

Print “ Tree is Empty”

Exit

Else

Set Pointer= Root

[end if]

Step2: Repeat while Pointer  Left= Null

Set Pointer= Pointer Left

[End Loop]

Step3: Set Min=PointerInfo

Step4: Print : Min

Step5: Exit

Complexity to find the smallest element in BST

The complexity of finding the smallest element is

dependent upon the height of the binary search tree.

So, if the height of the left leg of the tree is highest then the

worst case complexity will be O(h).

In case the binary search tree is complete or almost

complete binary search tree with n elements, the

complexity of finding the smallest element will be

O(log2n)

Finding the largest element in BST

As in binary search tree every right node is smaller than left

node in each subtree of BST.

Therefore to find the largest element in BST we will have to

traverse the right most node of the BST .

Algorithm to find the largest element in BST

Step1: If Root=Null Then

Print “ Tree is Empty”

Exit

Else

Set Pointer= Root

[end if]

Step2: Repeat while Pointer  Right= Null

Set Pointer= Pointer Right

[End Loop]

Step3: Set Max=PointerInfo

Step4: Print : Max

Step5: Exit

The complexity of finding the largest element is dependent

upon the height of the binary search tree.

So, if the height of the right leg of the tree is highest then the

worst case complexity will be O(h).

In case the binary search tree is complete or almost complete

binary search tree with n elements, the complexity of finding

the largest element will be O(log2n)

Complexity to find the largest element in BST

