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EXPRESSION TREESEXPRESSION TREES

• An expression tree for an arithmetic, relational, or   

logical expression is a binary tree in which :

• The parentheses in the expression do not appear.

• The leaves are the variables or constants in the 

expression.

• The non-leaf nodes are the operators in the expression :

• A node for a binary operator has two non-empty 

subtrees.

• A node for a unary operator has one non-empty 

subtree.



Example of Expression TreeExample of Expression Tree

Inorder Traversal ResultExpression TreeExpression
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Why Expression Trees?Why Expression Trees?

• Expression trees are used to remove ambiguity in expressions.

• Consider the algebraic expression 2 - 3 * 4 + 5. 

• Without the use of precedence rules or parentheses, different 

orders of evaluation are possible :

((2-3)*(4+5)) = -9

((2-(3*4))+5) = -5

(2-((3*4)+5)) = -15

(((2-3)*4)+5) = 1

(2-(3*(4+5))) = -25

• The expression is ambiguous because it uses infix notation : 

each operator is placed between its operands.



Why Expression trees? (contd.)Why Expression trees? (contd.)

• Storing a fully parenthesized expression, such as ((x+2)-

(y*(4-z))), is wasteful, since the parentheses in the expression 

need to be stored to properly evaluate the expression.

• A compiler will read an expression in a language like Java, 

and transform it into an expression tree.

• Expression trees impose a hierarchy on the operations in the 

expression. Terms deeper in the tree get evaluated first. This 

allows the establishment of the correct precedence of 

operations without using parentheses. 

• Expression trees can be very useful for:

• Evaluation of the expression.

• Generating correct compiler code to actually compute    

the expression's value at execution time.

• Performing symbolic mathematical operations (such as 

differentiation) on the expression.



Implementing the Expression TreeImplementing the Expression Tree

Expression Trees can be achieved by using three 

notations. These are :

• Prefix Notation

• Infix Notation

• Postfix Notation



Prefix NotationPrefix Notation

• A preorder traversal of an expression tree yields the prefix (or 

polish) form of the expression.

• In this form, every operator appears before its operand(s). 

For Example , Consider the tree :

Prefix Notation : + a * - b c d

+

*a

d-

cb



Infix NotationInfix Notation

• An inorder traversal of an expression tree yields the infix 

form of the expression.

• In this form, every operator appears between its operand(s).

For Example , Consider the tree :

Infix Notation : a + b - c * d

+

*a

d-

cb



Postfix NotationPostfix Notation

• An postorder traversal of an expression tree yields the postfix 

form of the expression.

• In this form, every operator appears after its operand(s).

For Example , Consider the tree :

Postfix Notation : a b c - d * +

+

*a

d-

cb



Prefix, Infix, and Postfix Forms (contd.)Prefix, Infix, and Postfix Forms (contd.)

Postfix forms Infix formsPrefix formsExpression

a b +a + b+ a b(a + b)

a b c * -a - b * c- a * b ca - (b * c)

x loglog xlog xlog (x)

n !n !! nn !



Expression Tree from Postfix NotationExpression Tree from Postfix Notation

Consider the expression (a + b) * c. The postfix expression is:

a b + c *

Step 1 :

Step 2 : a b

a b

+



Expression Tree from Postfix NotationExpression Tree from Postfix Notation

Step 3 :

Step 4 :

a b

+

c

a b

c

*

+

Hence, the Expression Tree.



NOTENOTE : For a computer generator program constructing

an expression tree from infix notation is not preferred.

Instead , a computer program uses postfix expression to

express the expression tree. Because in postfix expression

there is no need to apply rules of precedence and

associativity.



HUFFMAN ALGORITHMHUFFMAN ALGORITHM

MOTIVATION

• Suppose we want to store and transmit very large

files (messages) consisting of strings (words)

constructed over an alphabet of characters (letters).

• Representing each character with a fixed-length

code will not result in the shortest possible file!

• Example: 8-bit ASCII code for characters

– some characters are much more frequent than others

– using shorter codes for frequent characters and longer

ones for infrequent ones will result in a shorter file.



• Represent the characters from an input alphabet using a variable-

length code alphabet C, taking into account the occurrence

frequency of the characters.

• Desired properties:

– The code must be uniquely decipherable: every message can

be decoded in only one way.

– The code must be optimal with respect to the input probability

distribution.

– No string is a prefix of another.

Coding : Problem DefinitionCoding : Problem Definition



ExampleExample

CharacterCharacterCharacterCharacter aaaa bbbb cccc dddd eeee ffff

Frequency Frequency Frequency Frequency 

(%)(%)(%)(%)

45 13 12 16 9 5

Fixed Fixed Fixed Fixed 

LengthLengthLengthLength

000 001 010 011 100 101

Variable Variable Variable Variable 

LengthLengthLengthLength

0 

101

101 100 111 1101 110

0

Message: abadef

Fixed Length : 000001000011100101

Variable Length : 0101011111011100

A file of 100,000 characters takes:

• 3×100,000 = 300,000 bits with fixed-length code

• (.45×1 + .13×3 + .12×3+ .16×3 + .09×4 + .05×4) ×100,000 =

224,000 bits on average with variable-length code (25% less)



• We consider only prefix codes: no code-word is a prefix of another

code-word. Prefix codes are uniquely decipherable by definition.

• A binary prefix code can be represented as a binary tree:

– leaves are a code-words and their frequency (%)

– internal nodes are binary decision points: “0” means go to the

left, “1” means go to the right of a character. They include the

sum of frequencies of their children.

– The path from the root to the code-word is the binary

representation of the code-word.

Prefix CodesPrefix Codes



Example: fixedExample: fixed--length prefix code (1)length prefix code (1)

a b c d e f

0 1

0

0

0

0 0

1

11

Message: 000.001.000.011.100.101 abadef



Example: Example: variablevariable--length length prefix code prefix code (2)(2)

ef

dc b

0 1

0

0

0

0 11

1

a
1

0

Message: 0.101.0.111.1101.1100

100 101

1100 1101

111



• Idea: build the tree bottom-up, starting with the code-words

as leafs of the tree and creating intermediate nodes by merging

the new object whose frequency is the sum of the frequencies

of the merged objects.

• To efficiently find the two least-frequent objects, use a

minimum priority queue.

• The result of the merger of two objects is a new object

whose frequency is the sum of the frequencies of the merged

objects.

Huffman code: constructionHuffman code: construction



Start :

Step 1 :

Step 2 :  

e:9f:5 c:12 b:13 a:45d:16

e:9 f:5

c:12 b:13 d:16 a:45

e:9 f:5

14

14

b:13c:12

25d:16 a:45

0 1

1 10 0

Example : Huffman Code Construction(1)Example : Huffman Code Construction(1)



Step 3:

b:13c:12

25

e:9 f:5

d:1614

30

a:45

0 1 0

0

1

1

Example : Huffman Code Construction(2)Example : Huffman Code Construction(2)



Step 4 :

b:13c:12

25

e:9 f:5

d:1614

30

55a:45

0 1

1 1

1

0 0

0

Example : Huffman Code Example : Huffman Code Construction(3)Construction(3)



0

b:13c:12

25

e:9 f:5

d:1614

30

55a:45

100

0 1

0 0

0

1

1

1

0

100

1

101

1100 1101

111

Step 5 :

Example : Huffman Code Construction(4)Example : Huffman Code Construction(4)



Result :  Codes for the variables :-

a : 0

b : 100

c : 101

d : 111

e : 1100

f : 1101

Hence, no code is the prefix of another code.

Example : Huffman Code Example : Huffman Code Construction(5)Construction(5)



Huffman code: decodingHuffman code: decoding

• Huffman invented in 1952 a greedy algorithm for constructing

an optimal prefix code, called a Huffman code.

• Decoding:

1. Start at the root of the coding tree T, read input bits.

2. After reading “0” go left

3. After reading “1” go right

4. If a leaf node has been reached, output the character stored

in the leaf, and return to the root of the tree.

Complexity: O(n), where n is the message length


