
BOOKBOOKBOOKBOOK

A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Department of Computer Science, Punjabi University Patiala

EXPRESSION EXPRESSION EXPRESSION EXPRESSION EXPRESSION EXPRESSION EXPRESSION EXPRESSION TREE TREE TREE TREE TREE TREE TREE TREE

& & & & & & & &

HUFFMAN ALGORITHMHUFFMAN ALGORITHMHUFFMAN ALGORITHMHUFFMAN ALGORITHMHUFFMAN ALGORITHMHUFFMAN ALGORITHMHUFFMAN ALGORITHMHUFFMAN ALGORITHM

• Introduction to Expression trees

• Why Expression Tree

• Implementation of Expression trees

• Introduction to Huffman Algorithm

• Prefix Codes

• Huffman Code : Construction

• Huffman Code : Decoding

CONTENTS FOR TODAY’S LECTURE CONTENTS FOR TODAY’S LECTURE

EXPRESSION TREESEXPRESSION TREES

• An expression tree for an arithmetic, relational, or

logical expression is a binary tree in which :

• The parentheses in the expression do not appear.

• The leaves are the variables or constants in the

expression.

• The non-leaf nodes are the operators in the expression :

• A node for a binary operator has two non-empty

subtrees.

• A node for a unary operator has one non-empty

subtree.

Example of Expression TreeExample of Expression Tree

Inorder Traversal ResultExpression TreeExpression

a + 3(a+3)

3+4*5-9+63+(4*5-(9+6))

log xlog(x)

n !n!

+

3a

+

-3

*

54

+

69

log

x

!

n

Why Expression Trees?Why Expression Trees?

• Expression trees are used to remove ambiguity in expressions.

• Consider the algebraic expression 2 - 3 * 4 + 5.

• Without the use of precedence rules or parentheses, different

orders of evaluation are possible :

((2-3)*(4+5)) = -9

((2-(3*4))+5) = -5

(2-((3*4)+5)) = -15

(((2-3)*4)+5) = 1

(2-(3*(4+5))) = -25

• The expression is ambiguous because it uses infix notation :

each operator is placed between its operands.

Why Expression trees? (contd.)Why Expression trees? (contd.)

• Storing a fully parenthesized expression, such as ((x+2)-

(y*(4-z))), is wasteful, since the parentheses in the expression

need to be stored to properly evaluate the expression.

• A compiler will read an expression in a language like Java,

and transform it into an expression tree.

• Expression trees impose a hierarchy on the operations in the

expression. Terms deeper in the tree get evaluated first. This

allows the establishment of the correct precedence of

operations without using parentheses.

• Expression trees can be very useful for:

• Evaluation of the expression.

• Generating correct compiler code to actually compute

the expression's value at execution time.

• Performing symbolic mathematical operations (such as

differentiation) on the expression.

Implementing the Expression TreeImplementing the Expression Tree

Expression Trees can be achieved by using three

notations. These are :

• Prefix Notation

• Infix Notation

• Postfix Notation

Prefix NotationPrefix Notation

• A preorder traversal of an expression tree yields the prefix (or

polish) form of the expression.

• In this form, every operator appears before its operand(s).

For Example , Consider the tree :

Prefix Notation : + a * - b c d

+

*a

d-

cb

Infix NotationInfix Notation

• An inorder traversal of an expression tree yields the infix

form of the expression.

• In this form, every operator appears between its operand(s).

For Example , Consider the tree :

Infix Notation : a + b - c * d

+

*a

d-

cb

Postfix NotationPostfix Notation

• An postorder traversal of an expression tree yields the postfix

form of the expression.

• In this form, every operator appears after its operand(s).

For Example , Consider the tree :

Postfix Notation : a b c - d * +

+

*a

d-

cb

Prefix, Infix, and Postfix Forms (contd.)Prefix, Infix, and Postfix Forms (contd.)

Postfix forms Infix formsPrefix formsExpression

a b +a + b+ a b(a + b)

a b c * -a - b * c- a * b ca - (b * c)

x loglog xlog xlog (x)

n !n !! nn !

Expression Tree from Postfix NotationExpression Tree from Postfix Notation

Consider the expression (a + b) * c. The postfix expression is:

a b + c *

Step 1 :

Step 2 : a b

a b

+

Expression Tree from Postfix NotationExpression Tree from Postfix Notation

Step 3 :

Step 4 :

a b

+

c

a b

c

*

+

Hence, the Expression Tree.

NOTENOTE : For a computer generator program constructing

an expression tree from infix notation is not preferred.

Instead , a computer program uses postfix expression to

express the expression tree. Because in postfix expression

there is no need to apply rules of precedence and

associativity.

HUFFMAN ALGORITHMHUFFMAN ALGORITHM

MOTIVATION

• Suppose we want to store and transmit very large

files (messages) consisting of strings (words)

constructed over an alphabet of characters (letters).

• Representing each character with a fixed-length

code will not result in the shortest possible file!

• Example: 8-bit ASCII code for characters

– some characters are much more frequent than others

– using shorter codes for frequent characters and longer

ones for infrequent ones will result in a shorter file.

• Represent the characters from an input alphabet using a variable-

length code alphabet C, taking into account the occurrence

frequency of the characters.

• Desired properties:

– The code must be uniquely decipherable: every message can

be decoded in only one way.

– The code must be optimal with respect to the input probability

distribution.

– No string is a prefix of another.

Coding : Problem DefinitionCoding : Problem Definition

ExampleExample

CharacterCharacterCharacterCharacter aaaa bbbb cccc dddd eeee ffff

Frequency Frequency Frequency Frequency

(%)(%)(%)(%)

45 13 12 16 9 5

Fixed Fixed Fixed Fixed

LengthLengthLengthLength

000 001 010 011 100 101

Variable Variable Variable Variable

LengthLengthLengthLength

0

101

101 100 111 1101 110

0

Message: abadef

Fixed Length : 000001000011100101

Variable Length : 0101011111011100

A file of 100,000 characters takes:

• 3×100,000 = 300,000 bits with fixed-length code

• (.45×1 + .13×3 + .12×3+ .16×3 + .09×4 + .05×4) ×100,000 =

224,000 bits on average with variable-length code (25% less)

• We consider only prefix codes: no code-word is a prefix of another

code-word. Prefix codes are uniquely decipherable by definition.

• A binary prefix code can be represented as a binary tree:

– leaves are a code-words and their frequency (%)

– internal nodes are binary decision points: “0” means go to the

left, “1” means go to the right of a character. They include the

sum of frequencies of their children.

– The path from the root to the code-word is the binary

representation of the code-word.

Prefix CodesPrefix Codes

Example: fixedExample: fixed--length prefix code (1)length prefix code (1)

a b c d e f

0 1

0

0

0

0 0

1

11

Message: 000.001.000.011.100.101 abadef

Example: Example: variablevariable--length length prefix code prefix code (2)(2)

ef

dc b

0 1

0

0

0

0 11

1

a
1

0

Message: 0.101.0.111.1101.1100

100 101

1100 1101

111

• Idea: build the tree bottom-up, starting with the code-words

as leafs of the tree and creating intermediate nodes by merging

the new object whose frequency is the sum of the frequencies

of the merged objects.

• To efficiently find the two least-frequent objects, use a

minimum priority queue.

• The result of the merger of two objects is a new object

whose frequency is the sum of the frequencies of the merged

objects.

Huffman code: constructionHuffman code: construction

Start :

Step 1 :

Step 2 :

e:9f:5 c:12 b:13 a:45d:16

e:9 f:5

c:12 b:13 d:16 a:45

e:9 f:5

14

14

b:13c:12

25d:16 a:45

0 1

1 10 0

Example : Huffman Code Construction(1)Example : Huffman Code Construction(1)

Step 3:

b:13c:12

25

e:9 f:5

d:1614

30

a:45

0 1 0

0

1

1

Example : Huffman Code Construction(2)Example : Huffman Code Construction(2)

Step 4 :

b:13c:12

25

e:9 f:5

d:1614

30

55a:45

0 1

1 1

1

0 0

0

Example : Huffman Code Example : Huffman Code Construction(3)Construction(3)

0

b:13c:12

25

e:9 f:5

d:1614

30

55a:45

100

0 1

0 0

0

1

1

1

0

100

1

101

1100 1101

111

Step 5 :

Example : Huffman Code Construction(4)Example : Huffman Code Construction(4)

Result : Codes for the variables :-

a : 0

b : 100

c : 101

d : 111

e : 1100

f : 1101

Hence, no code is the prefix of another code.

Example : Huffman Code Example : Huffman Code Construction(5)Construction(5)

Huffman code: decodingHuffman code: decoding

• Huffman invented in 1952 a greedy algorithm for constructing

an optimal prefix code, called a Huffman code.

• Decoding:

1. Start at the root of the coding tree T, read input bits.

2. After reading “0” go left

3. After reading “1” go right

4. If a leaf node has been reached, output the character stored

in the leaf, and return to the root of the tree.

Complexity: O(n), where n is the message length

